Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(5)2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38473758

RESUMO

Alzheimer's disease (AD) is the most common form of dementia, characterized by the accumulation of ß-amyloid plaques, tau tangles, neuroinflammation, and synaptic/neuronal loss, the latter being the strongest correlating factor with memory and cognitive impairment. Through an in vitro study on a neurons-astrocytes-microglia (NAM) co-culture system, we analyzed the effects of cerebrospinal fluid (CSF) samples from AD and non-AD patients (other neurodegenerative pathologies). Treatment with CSF from AD patients showed a loss of neurofilaments and spheroids, suggesting the presence of elements including CX3CL1 (soluble form), destabilizing the neurofilaments, cellular adhesion processes, and intercellular contacts. The NAM co-cultures were analyzed in immunofluorescence assays for several markers related to AD, such as through zymography, where the expression of proteolytic enzymes was quantified both in cell extracts and the co-cultures' conditioned medium (CM). Through qRT-PCR assays, several genes involved in the formation of ß-amyloid plaque, in phosphorylation of tau, and in inflammation pathways and MMP expression were investigated.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Microglia/metabolismo , Técnicas de Cocultura , Astrócitos/metabolismo , Proteínas tau/metabolismo , Peptídeos beta-Amiloides/metabolismo , Neurônios/metabolismo
2.
Int J Mol Sci ; 24(23)2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38069230

RESUMO

Despite Alzheimer's Disease (AD) being known from the times of Alois Alzheimer, who lived more than one century ago, many aspects of the disease are still obscure, including the pathogenesis, the clinical spectrum definition, and the therapeutic approach. Well-established biomarkers for AD come from the histopathological hallmarks of the disease, which are Aß and phosphorylated Tau protein aggregates. Consistently, cerebrospinal fluid (CSF) Amyloid ß (Aß) and phosphorylated Tau level measurements are currently used to detect AD presence. However, two central biases affect these biomarkers. Firstly, incomplete knowledge of the pathogenesis of diseases legitimates the search for novel molecules that, reasonably, could be expressed by neurons and microglia and could be detected in blood simpler and earlier than the classical markers and in a higher amount. Further, studies have been performed to evaluate whether CSF biomarkers can predict AD onset in Mild Cognitive Impairment (MCI) patients. However, the MCI definition has changed over time. Hence, the studies on MCI patients seem to be biased at the beginning due to the imprecise enrollment and heterogeneous composition of the miscellaneous MCI subgroup. Plasma biomarkers and novel candidate molecules, such as microglia biomarkers, have been tentatively investigated and could represent valuable targets for diagnosing and monitoring AD. Also, novel AD markers are urgently needed to identify molecular targets for treatment strategies. This review article summarizes the main CSF and blood AD biomarkers, underpins their advantages and flaws, and mentions novel molecules that can be used as potential biomarkers for AD.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico , Disfunção Cognitiva/líquido cefalorraquidiano , Proteínas tau/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano
3.
Int J Mol Sci ; 24(9)2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37175729

RESUMO

Neuroinflammation plays a fundamental role in the development and progression of neurodegenerative diseases. It could therefore be said that neuroinflammation in neurodegenerative pathologies is not a consequence but a cause of them and could represent a therapeutic target of neuronal degeneration. CX3CL1 and several proteases (ADAMs/MMPs) are strongly involved in the inflammatory pathways of these neurodegenerative pathologies with multiple effects. On the one hand, ADAMs have neuroprotective and anti-apoptotic effects; on the other hand, they target cytokines and chemokines, thus causing inflammatory processes and, consequently, neurodegeneration. CX3CL1 itself is a cytokine substrate for the ADAM, ADAM17, which cleaves and releases it in a soluble isoform (sCX3CL1). CX3CL1, as an adhesion molecule, on the one hand, plays an inhibiting role in the pro-inflammatory response in the central nervous system (CNS) and shows neuroprotective effects by binding its membrane receptor (CX3CR1) present into microglia cells and maintaining them in a quiescent state; on the other hand, the sCX3CL1 isoform seems to promote neurodegeneration. In this review, the dual roles of CX3CL1 and ADAMs/MMPs in different neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (MH), and multiple sclerosis (MS), are investigated.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Citocinas/metabolismo , Doenças Neurodegenerativas/metabolismo , Doenças Neuroinflamatórias , Quimiocina CX3CL1/metabolismo , Sistema Nervoso Central/metabolismo , Doença de Alzheimer/metabolismo , Microglia/metabolismo
4.
Int J Mol Sci ; 24(9)2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37175935

RESUMO

Alzheimer's disease (AD) is a scourge for patients, caregivers and healthcare professionals due to the progressive character of the disease and the lack of effective treatments. AD is considered a proteinopathy, which means that aetiological and clinical features of AD have been linked to the deposition of amyloid ß (Aß) and hyperphosphorylated tau protein aggregates throughout the brain, with Aß and hyperphosphorylated tau representing classical AD hallmarks. However, some other putative mechanisms underlying the pathogenesis of the disease have been proposed, including inflammation in the brain, microglia activation, impaired hippocampus neurogenesis and alterations in the production and release of neurotrophic factors. Among all, microglia activation and chronic inflammation in the brain gained some attention, with researchers worldwide wondering whether it is possible to prevent and stop, respectively, the onset and progression of the disease by modulating microglia phenotypes. The following key points have been established so far: (i) Aß deposition in brain parenchyma represents repeated stimulus determining chronic activation of microglia; (ii) chronic activation and priming of microglia make these cells lose neuroprotective functions and favour damage and loss of neurons; (iii) quiescent status of microglia at baseline prevents chronic activation and priming, meaning that the more microglia are quiescent, the less they become neurotoxic. Many molecules are known to modulate the quiescent baseline state of microglia, attracting huge interest among scientists as to whether these molecules could be used as valuable targets in AD treatment. The downside of the coin came early with the observation that quiescent microglia do not display phagocytic ability, being unable to clear Aß deposits since phagocytosis is crucial for Aß clearance efficacy. A possible solution for this issue could be found in the modulation of microglia status at baseline, which could help maintain both neuroprotective features and phagocytic ability at the same time. Among the molecules known to influence the baseline status of microglia, C-X3-chemokine Ligand 1 (CX3CL1), also known as Fractalkine (FKN), is one of the most investigated. FKN and its microglial receptor CX3CR1 are crucial players in the interplay between neurons and microglia, modulating the operation of some neural circuits and the efficacy and persistence of immune response against injury. In addition, CX3CL1 regulates synaptic pruning and plasticity in the developmental age and in adulthood, when it strongly impacts the hippocampus neurogenesis of the adult. CX3CL1 has an effect on Aß clearance and tau phosphorylation, as well as in microglia activation and priming. For all the above, CX3CL1/CX3CR1 signalling has been widely studied in relation to AD pathogenesis, and its biochemical pathway could hide molecular targets for novel treatment strategies in AD. This review summarizes the possible role of CX3CL1 in AD pathogenesis and its use as a potential target for AD treatment.


Assuntos
Doença de Alzheimer , Quimiocina CXCL1 , Terapia de Alvo Molecular , Transdução de Sinais , Doença de Alzheimer/fisiopatologia , Doença de Alzheimer/terapia , Terapia de Alvo Molecular/tendências , Microglia/fisiologia , Quimiocina CXCL1/metabolismo , Receptor 1 de Quimiocina CX3C/metabolismo
5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614325

RESUMO

Alzheimer's Disease (AD) is the most common cause of dementia, having a remarkable social and healthcare burden worldwide. Amyloid ß (Aß) and protein Tau aggregates are disease hallmarks and key players in AD pathogenesis. However, it has been hypothesized that microglia can contribute to AD pathophysiology, as well. Microglia are CNS-resident immune cells belonging to the myeloid lineage of the innate arm of immunity. Under physiological conditions, microglia are in constant motion in order to carry on their housekeeping function, and they maintain an anti-inflammatory, quiescent state, with low expression of cytokines and no phagocytic activity. Upon various stimuli (debris, ATP, misfolded proteins, aggregates and pathogens), microglia acquire a phagocytic function and overexpress cytokine gene modules. This process is generally regarded as microglia activation and implies that the production of pro-inflammatory cytokines is counterbalanced by the synthesis and the release of anti-inflammatory molecules. This mechanism avoids excessive inflammatory response and inappropriate microglial activation, which causes tissue damage and brain homeostasis impairment. Once the pathogenic stimulus has been cleared, activated microglia return to the naïve, anti-inflammatory state. Upon repeated stimuli (as in the case of Aß deposition in the early stage of AD), activated microglia shift toward a less protective, neurotoxic phenotype, known as "primed" microglia. The main characteristic of primed microglia is their lower capability to turn back toward the naïve, anti-inflammatory state, which makes these cells prone to chronic activation and favours chronic inflammation in the brain. Primed microglia have impaired defence capacity against injury and detrimental effects on the brain microenvironment. Additionally, priming has been associated with AD onset and progression and can represent a promising target for AD treatment strategies. Many factors (genetics, environmental factors, baseline inflammatory status of microglia, ageing) generate an aberrantly activated phenotype that undergoes priming easier and earlier than normally activated microglia do. Novel, promising targets for therapeutic strategies for AD have been sought in the field of microglia activation and, importantly, among those factors influencing the baseline status of these cells. The CX3CL1 pathway could be a valuable target treatment approach in AD, although preliminary findings from the studies in this field are controversial. The current review aims to summarize state of the art on the role of microglia dysfunction in AD pathogenesis and proposes biochemical pathways with possible targets for AD treatment.


Assuntos
Doença de Alzheimer , Microglia , Humanos , Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/metabolismo , Anti-Inflamatórios/farmacologia , Citocinas/metabolismo , Microglia/imunologia
6.
J Clin Med ; 11(19)2022 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-36233371

RESUMO

Alzheimer's disease (AD) is the most common form of cognitive decline worldwide, occurring in about 10% of people older than 65 years. The well-known hallmarks of AD are extracellular aggregates of amyloid ß (Aß) and intracellular neurofibrillary tangles (NFTs) of tau protein. The evidence that Aß overproduction leads to AD has paved the way for the AD pathogenesis amyloid cascade hypothesis, which proposes that the neuronal damage is sustained by Aß overproduction. Consistently, AD cerebrospinal fluid (CSF) biomarkers used in clinical practice, including Aß 1-42, Aß 1-40, Aß 42/40 ratio, and pTau, are related to the amyloid hypothesis. Recently, it was suggested that the Aß deposition cascade cannot fully disclose AD pathogenesis, with other putative players being involved in the pathophysiology of the disease. Among all, one of the most studied factors is inflammation in the brain. Hence, biomarkers of inflammation and microglia activation have also been proposed to identify AD. Among them, CX3 chemokine ligand 1 (CX3CL1) has taken center stage. This transmembrane protein, also known as fractalkine (FKN), is normally expressed in neurons, featuring an N-terminal chemokine domain and an extended mucin-like stalk, following a short intra-cytoplasmatic domain. The molecule exists in both membrane-bound and soluble forms. It is accepted that the soluble and membrane-bound forms of FKN evoke differential signaling within the CNS. Given the link between CX3XL1 and microglial activation, it has been suggested that CX3CL1 signaling disruption could play a part in the pathogenesis of AD. Furthermore, a role for chemokine as a biomarker has been proposed. However, the findings collected are controversial. The current study aimed to describe the cerebrospinal fluid (CSF) levels of CX3XL1 and classical biomarkers in AD patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...